p53-independent apoptosis limits DNA damage-induced aneuploidy.

نویسندگان

  • Laura M McNamee
  • Michael H Brodsky
چکیده

DNA damage or unprotected telomeres can trigger apoptosis via signaling pathways that directly sense abnormal DNA structures and activate the p53 transcription factor. We describe a p53-independent mechanism that acts in parallel to the canonical DNA damage response pathway in Drosophila to induce apoptosis after exposure to ionizing radiation. Following recovery from damage-induced cell cycle arrest, p53 mutant cells activate the JNK pathway and expression of the pro-apoptotic gene hid. Mutations in grp, a cell cycle checkpoint gene, and puc, a negative regulator of the JNK pathway, sensitize p53 mutant cells to ionizing radiation (IR)-induced apoptosis. Induction of chromosome aberrations by DNA damage generates cells with segmental aneuploidy and heterozygous for mutations in ribosomal protein genes. p53-independent apoptosis limits the formation of these aneuploid cells following DNA damage. We propose that reduced copy number of haploinsufficient genes following chromosome damage activates apoptosis and helps maintain genomic integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAD+ modulates p53 DNA binding specificity and function.

DNA damage induces p53 DNA binding activity, which affects tumorigenesis, tumor responses to therapies, and the toxicities of cancer therapies (B. Vogelstein, D. Lane, and A. J. Levine, Nature 408:307-310, 2000; K. H. Vousden and X. Lu, Nat. Rev. Cancer 2:594-604, 2002). Both transcriptional and transcription-independent activities of p53 contribute to DNA damage-induced cell cycle arrest, apop...

متن کامل

Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells

The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations--misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis ...

متن کامل

CARF Is a vital dual regulator of cellular senescence and apoptosis.

The tumor suppressor protein, p53, is central to the pathways that monitor the stress, DNA damage repair, cell cycle, aging, and cancer. Highly complex p53 networks involving its upstream sensors and regulators, downstream effectors and regulatory feedback loops have been identified. CARF (Collaborator of ARF) was shown to enhance ARF-dependent and -independent wild-type p53 function. Here we r...

متن کامل

The death domain kinase RIP has an important role in DNA damage-induced, p53-independent cell death.

Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kin...

متن کامل

Different cell fates after mitotic slippage: From aneuploidy to polyploidy

The molecular mechanism responsible for cell fate after mitotic slippage remains unclear. We investigated the different postmitotic effects of aneuploidy versus polyploidy using chemical inhibitors of centromere-associated protein-E (CENP-E) and kinesin family member 11 (KIF11, also known as Eg5). Aneuploidy caused substantial proteotoxic stress and DNA damage accompanied by p53-mediated postmi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 182 2  شماره 

صفحات  -

تاریخ انتشار 2009